Resumen:
Various constraints of Static Random Access Memory (SRAM) are leading to consider new memory technologies as candidates for building on-chip shared last-level caches (SLLCs). Spin-Transfer Torque RAM (STT-RAM) is currently postulated as the prime contender due to its better energy efficiency, smaller die footprint and higher scalability. However, STT-RAM also exhibits some drawbacks, like slow and energy-hungry write operations that need to be mitigated before it can be used in SLLCs for the next generation of computers. In this work, we address these shortcomings by leveraging a new management mechanism for STT-RAM SLLCs. This approach is based on the previous observation that although the stream of references arriving at the SLLC of a Chip MultiProcessor (CMP) exhibits limited temporal locality, it does exhibit reuse locality, ie …