Resumen:
This paper presents a centralized control scheme to regulate distribution network voltages in the presence of high penetration of distributed generation. The approach is inspired of Model Predictive Control in order to compensate for modeling inaccuracies and measurement noise. The control actions, calculated from a multi-step optimization, are updated and corrected by real-time measurements. The proposed controller uses a linear model to predict the behavior of the system and the optimization is solved using quadratic programming. The proposed corrective control has been tested in a 11-kV distribution network including 75 nodes and hosting 22 distributed generating units.