Resumen:
The evolving complexity of electric power systems with higher levels of uncertainties is a new challenge faced by system operators. Therefore, new methods for power system prediction, monitoring and state estimation are relevant for the efficient exploitation of renewable energy sources and the secure operation of network assets. In order to estimate all possible operating conditions of power systems, this Thesis proposes the use of Gaussian mixture models to represent non-Gaussian correlated input variables, such as wind power output or aggregated load demands in the probabilistic load flow problem. The formulation, based on multiple Weighted Least Square runs, is also extended to monitor distribution radial networks where the uncertainty of these networks is aggravated by the lack of sufficient real-time measurements. This research also explores reduction techniques to limit the computational demands of …