Universidad de Costa Rica

A Study on Machine Learning Models for Predicting Microarchitectural Performance


Colaboradores:
Ing. Erick Carvajal Barboza, PhD.
Autores:
Melissa Rodríguez Jiménez, Erick Carvajal Barboza
Revista:
IEEE Central America and Panama Student Conference (CONESCAPAN)
Editor:
URL:
https://ieeexplore.ieee.org/document/11229461/
Laboratorios:
Laboratorio de Investigación en Microelectrónica y Arquitectura de computadores (LIMA)

Resumen:

Performance validation and debugging are essential yet time-consuming stages in microprocessor design, often relying on manual analysis of performance counter data. This work explores the use of machine learning to automate the estimation of microprocessor performance, specifically instructions per cycle (IPC), using execution traces collected from the ChampSim simulator. We evaluate multiple feature engineering strategies and ML models, including Random Forest and Gradient Boosted Decision Trees, to identify effective predictors of performance behavior. Our best-performing models achieve over a 45% reduction in prediction error compared to early-stage baselines. These results demonstrate the potential of machine learning to streamline performance validation workflows, reduce manual debugging effort, and enable future automation in microarchitectural analysis.

© 2020 Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.