Universidad de Costa Rica

Comparison of gaussian mixture reductions for probabilistic studies in power systems


Colaboradores:
Ing. Jairo Quirós Tortós, PhD.
Autores:
G Valverde and J Quirós Tortós and V Terzija
Revista:
N/A
Editor:
IEEE
URL:
http://ieeexplore.ieee.org/abstract/document/6345346/

Resumen:

This paper presents the comparison of three pair-merging methods to reduce the number of Gaussian mixture components used to model non-Gaussian Probabilistic Density Function (PDF) of random power system variables such as power demands, wind power outputs or other intermittent power sources. It also introduces a fine-tuning algorithm to improve the solution of the pair-merging methods to better approximate the original Gaussian mixture. A Gaussian mixture distribution with seven components is used to validate and demonstrate the algorithms.

© 2020 Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.