Universidad de Costa Rica

Harnessing Design History and Machine Learning for Precise Delay Estimation in Open Source EDA


Colaboradores:
Ing. Erick Carvajal Barboza, PhD.
Ing. Ana Eugenia Sánchez Villalobos, BSc.
Autores:
Alex Varela Quirós, Ana Sánchez Villalobos, Erick Carvajal Barboza
Revista:
IEEE 42nd Central America and Panama Convention (CONCAPAN XLII)
Editor:
URL:
https://ieeexplore.ieee.org/abstract/document/10933883
Laboratorios:
Laboratorio de Investigación en Microelectrónica y Arquitectura de computadores (LIMA)
Proyectos:
C3174: Desarrollo de algoritmos de optimización para el ajuste de parámetros de equipos de sincronización y cambios de punto de operación de generadores del sistema eléctrico nacional

Resumen:

This study introduces a machine learning-based methodology, that enhances and accelerates the delay estimation of integrated circuits at early design stages, improving the quality of delay estimations at these stages, where EDA tools are usually not very accurate due to the lack of information available. This work seeks to improve delay estimations of OpenLane, and open-source EDA tool, with data available at the placement stage. The proposed methodology leverages the data generated by previous designs, as well as the history of results from previous tool parameter configurations of the design being validated. Our results show that this methodology achieves delay estimations with up to 46% less error than the pre-route estimation of OpenLane, and with runtime reductions up to 80% when the machine learning model has historical data of the design.

© 2020 Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.