Universidad de Costa Rica

Correlating Pre-Route and Signoff Delay Through Delta-Based Machine Learning Prediction


Colaboradores:
Ing. Erick Carvajal Barboza, PhD.
Autores:
Alex Varela Quirós, Erick Carvajal Barboza
Revista:
IEEE 16th Latin America Symposium on Circuits and Systems (LASCAS)
Editor:
URL:
https://ieeexplore.ieee.org/document/10966284
Laboratorios:
Laboratorio de Investigación en Microelectrónica y Arquitectura de computadores (LIMA)
Proyectos:
C3174: Desarrollo de algoritmos de optimización para el ajuste de parámetros de equipos de sincronización y cambios de punto de operación de generadores del sistema eléctrico nacional

Resumen:

Accurate timing estimation is critical for the design closure of modern digital integrated circuits. However, significant discrepancies often arise between pre-route and signoff delay estimations due to factors such as inaccurate wire load models, and the lack of information regarding the complexities introduced by the routing stage. This paper presents a Machine Learning-based approach that aims to correlate the pre-route and the signoff delay estimations of OpenLane, an open source EDA tool, by predicting the difference (or Delta), between them, with the goal of enhancing early-stage estimation accuracy. Our approach effectively reduces timing uncertainty, enabling faster convergence towards signoff tool quality, and demonstrates potential to streamline the timing closure process. Experimental results show that the proposed model achieves high prediction accuracy, achieving up to 60% RMSE reduction versus the pre-route estimation of the tool by itself. Thus, making it a valuable tool for improving the efficiency of VLSI design methodologies.

© 2020 Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.